Fourth Semester B.E. Degree Examination, June/July 2016 Introduction to Quantum Mechanics

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1	a.	Explain the Inadequacy of classical physics.	(06 Marks)
	b.	Define uncertainity and complementarity. Prove uncertainity principle	with help of
		localization experiment.	(10 Marks)
	c.	Explain wave packet and write the physical significance.	(04 Marks)
			(04 Marks)
2	a.	Derive Schrödinger's wave equation for one dimensional and extend it to the	ee dimensions
		of inclusive forces.	(12 Marks)
	b.	Describe statistical interpretation and normalization of wave function.	(08 Marks)
		\circ	(
3	a.	Explain Hermitian, unitary and projection operators, commuting operators.	(09 Marks)
	b.	Explain matrix representation of an operator.	(05 Marks)
	c.	Write a short note on Hilbert space.	(06 Marks)
			(
4	a.	Explain the fundamental postulates of Quantum mechanics.	(10 Marks)
	b.	Explain explicit representation of operators.	(05 Marks)
	c.	Write a note on Poisson brackets and commutator brackets.	(05 Marks)
		PART - B	
5	a.	Derive an expression for Harmonic oscillators.	(10 Marks)
	b.	Derive an expression for Rigid rotator.	(10 Marks)
			(
6	a.	Derive an expression for free particle confined to 3 dimensional box.	(10 Marks)
	b.	Explain Electron energy bands in conductors, insulators and semi conductors.	(10 Marks)
		76,	
7		Explain with appropriate derivation the time independent and time dependen	t perturbation
		theory for non – degenerate an degenerate energy levels.	(20 Marks)
	0		(======================================
8	a.	Differentiate between reversible and irreversible computation with examples.	(06 Marks)
	b.	State and explain Moore's law.	(05 Marks)
	c.	Write note on Quantum computation and Quantum Bits.	(09 Marks)
			(os man Rs)

* * * * *